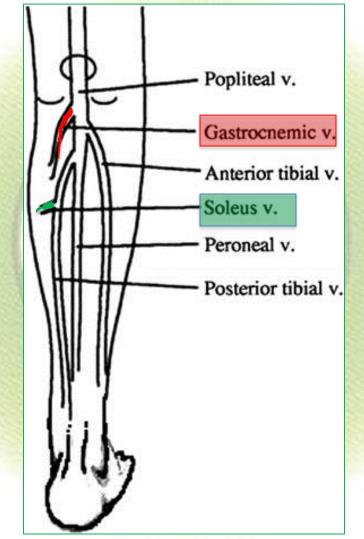
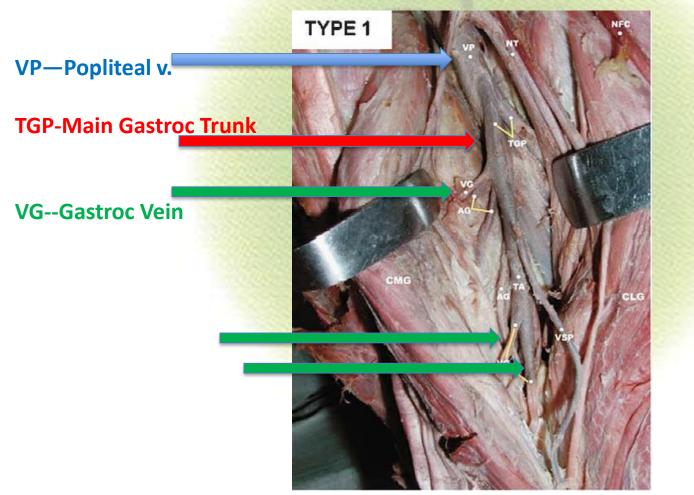
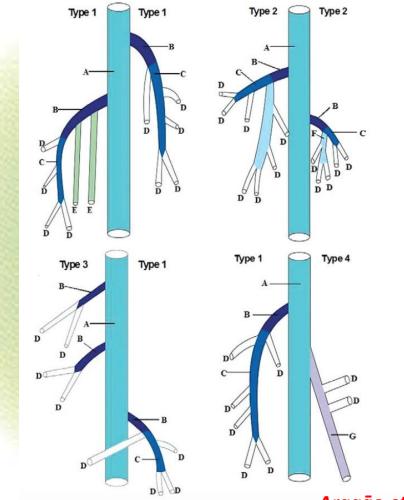
Clifford M. Sales, MD, MBA, FACS The Cardiovascular Care Group

Chief, Vascular Surgery Overlook Medical Center

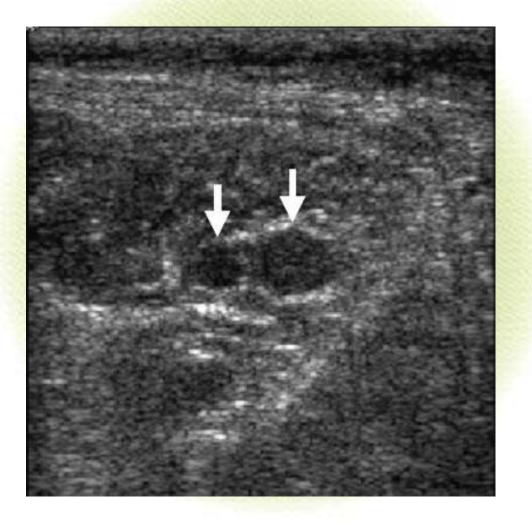

DISCLOSURES


No financial relationships to disclose

Will not be discussing nonapproved uses/techniques of devices or medications


Why the confusion?

- Little Consensus
 - **Recent studies**



Aragão et al Eur J Endovasc Surg 2006

Aragão et al Eur J Endovasc Surg 2006

Isolated Soleal and Gastrocnemius Vein Thrombosis <u>How Do You Report It?</u>

Deep Vein Thrombosis

Soleal (or Gastrocnemius) Vein Thrombosis

Minor Deep Vein Thrombosis

Intramuscular Vein Thrombosis

Isolated Soleal and Gastrocnemius Vein Thrombosis <u>How SHOULD You Report It?</u>

Below the fascia

Extension or Embolization

DEEP VEIN

Why The Confusion?

- \checkmark Sales $_{015}$

 ✓ Dei+ 10 2003
✓ Veibers 1988
✓ Sales 2010
✓ Schwart
✓ Muture 1560
✓ Schwart Beneficial Effect of A/C ✓ Gillet 2007

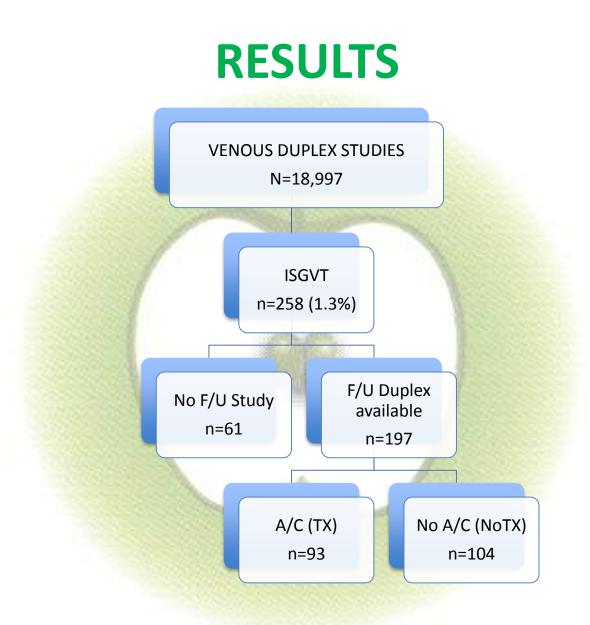
Antithrombotic Therapy for Venous Thromboembolic Disease^{*} American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (9th Edition) 2012

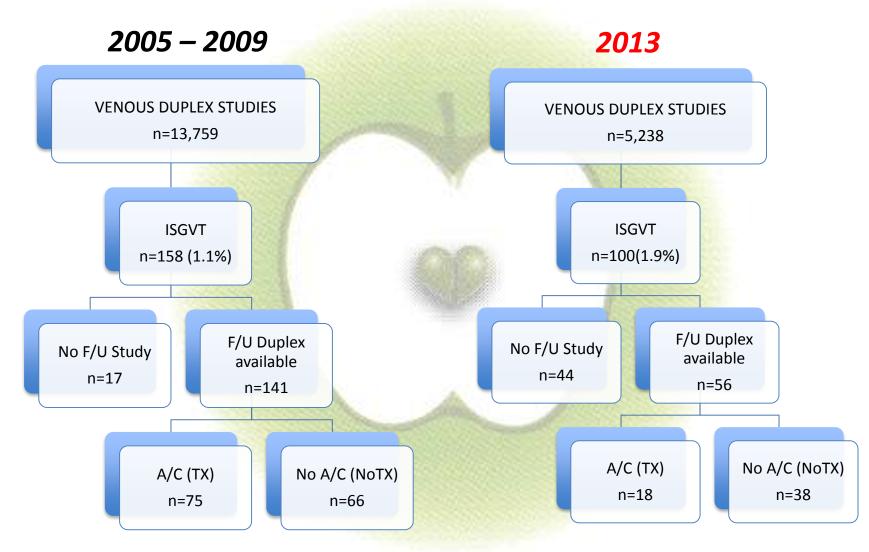
Failed to address the management of soleal and gastrocnemius thrombosis.

METHODOLOGY

Reviewed venous duplex scans from 2005 – 2009; 2013

All venous duplex scans (ICAVL lab)


Patients with ISGVT


Only patients with follow-up scans

Medical Record review

Duplex scans reviewed: Regression, No change or Progression of clot

All scans re-reviewed

			_
	ТХ	NoTX	
AGE (mean <u>+</u> SD)	71.5 ±17.6 yrs	72.2 \pm 14.6 yrs	
Congestive Heart Failure	15 (20%)	12 (19%)	
Atrial Fibrillation	19 (25%)	13 (20%)	
ESRD Stage V	6 (8%)	3 (5%)	
Recent Strike	9 (12%)	9 (14%)	
COPD	14 (18%)	11 (17%)	
Prior DVT	6 (8%)	6 (9%)	
History of Cancer	28 (37%)	23 (35%)	p=NS
Recent Surgery	36 (47%)	35 (54%)	
Ambulatory	24 (44%)	26 (51%)	
ICU Admission	28 (37%)	24 (37%)	
Vascular Consult Obtained	19 (25%)	19 (29%)	
Length of Stay (days)	17.3 ±16.8	14.3 ± 20.7	

	PROGRESSION	NO PROGRESSION or REGRESSION
TX Group	25 (27%)	67 (73%)
NoTX Group		

	PROGRESSION	NO PROGRESSION or REGRESSION
TX Group	25 (27%)	67 (73%)
NoTX Group	24 (23%)	79 (77%)
	p=.62 NS	

Multivariate Logistical Regression Model for Progression of Thrombosis

Factor	Mean or %	OR	95% CI	p-value
Anticoagulation	53.9%	1.28	(0.55,3.01)	0.57
Age (per 10 years)	71.8	0.79	(0.60,1.05)	0.11
Hypertension	59.3%	1.73	(0.81,3.72)	0.16
ESRD (CKD V)	6.4%	9.35	(1.55,56.54)	0.015
Recent CVA	12.9%	3.96	(1.17,13.38)	0.027
Liver Dysfunction (enzymes)	6.4%	0.12	(0.01,1.65)	0.11

- Retrospective analysis
- Anticoagulation protocol (LMWH vs. Unfx'd Heparin vs. Warfarin)
- Follow-up studies not uniform
- No measurement of valvular function

VALUE OF A/C IN TREATMENT OF ISGVT

NO REDUCTION IN

PROGRESSION OF

THROMBUS

CONCLUSIONS

ISGVT is different!

Technology improvements

Anatomically different

Smaller diameter and length than deep veins

- ✓ Soleal connect with tibial veins first then popliteal
- Clinically different

CURRENT TREATMENT ALGORITHM

- Watchful waiting
- Sequential Compression Device on uninvolved limb
- Repeat duplex in 2-3 days (even w/ A/C)
- Early ambulation, if possible

PRACTICAL IMPLICATIONS

SHOULD ISGVT BE CONSIDERED A DVT?

ASOL

UHC

Clifford M. Sales, MD, MBA, FACS The Cardiovascular Care Group

Chief, Vascular Surgery Overlook Medical Center